407 research outputs found

    A Universal Point Set for 2-Outerplanar Graphs

    Full text link
    A point set S⊆R2S \subseteq \mathbb{R}^2 is universal for a class G\cal G if every graph of G{\cal G} has a planar straight-line embedding on SS. It is well-known that the integer grid is a quadratic-size universal point set for planar graphs, while the existence of a sub-quadratic universal point set for them is one of the most fascinating open problems in Graph Drawing. Motivated by the fact that outerplanarity is a key property for the existence of small universal point sets, we study 2-outerplanar graphs and provide for them a universal point set of size O(nlog⁡n)O(n \log n).Comment: 23 pages, 11 figures, conference version at GD 201

    Disjoint edges in topological graphs and the tangled-thrackle conjecture

    Full text link
    It is shown that for a constant t∈Nt\in \mathbb{N}, every simple topological graph on nn vertices has O(n)O(n) edges if it has no two sets of tt edges such that every edge in one set is disjoint from all edges of the other set (i.e., the complement of the intersection graph of the edges is Kt,tK_{t,t}-free). As an application, we settle the \emph{tangled-thrackle} conjecture formulated by Pach, Radoi\v{c}i\'c, and T\'oth: Every nn-vertex graph drawn in the plane such that every pair of edges have precisely one point in common, where this point is either a common endpoint, a crossing, or a point of tangency, has at most O(n)O(n) edges

    Outerplanar crossing numbers of 3-row meshes, Halin graphs and complete p-partite graphs

    Get PDF
    An outerplanar (also called circular, convex, one-page) drawing of an n-vertex graph G is a drawing in which the vertices are placed on a circle and each edge is drawn using one straight-line segment. We derive exact results for the minimal number of crossings in any outerplanar drawings of the following classes of graphs: 3-row meshes, Halin graphs and complete p−partite graphs with equal size partite sets

    Tverberg-type theorems for intersecting by rays

    Full text link
    In this paper we consider some results on intersection between rays and a given family of convex, compact sets. These results are similar to the center point theorem, and Tverberg's theorem on partitions of a point set

    Superpatterns and Universal Point Sets

    Full text link
    An old open problem in graph drawing asks for the size of a universal point set, a set of points that can be used as vertices for straight-line drawings of all n-vertex planar graphs. We connect this problem to the theory of permutation patterns, where another open problem concerns the size of superpatterns, permutations that contain all patterns of a given size. We generalize superpatterns to classes of permutations determined by forbidden patterns, and we construct superpatterns of size n^2/4 + Theta(n) for the 213-avoiding permutations, half the size of known superpatterns for unconstrained permutations. We use our superpatterns to construct universal point sets of size n^2/4 - Theta(n), smaller than the previous bound by a 9/16 factor. We prove that every proper subclass of the 213-avoiding permutations has superpatterns of size O(n log^O(1) n), which we use to prove that the planar graphs of bounded pathwidth have near-linear universal point sets.Comment: GD 2013 special issue of JGA

    Ordered Level Planarity, Geodesic Planarity and Bi-Monotonicity

    Full text link
    We introduce and study the problem Ordered Level Planarity which asks for a planar drawing of a graph such that vertices are placed at prescribed positions in the plane and such that every edge is realized as a y-monotone curve. This can be interpreted as a variant of Level Planarity in which the vertices on each level appear in a prescribed total order. We establish a complexity dichotomy with respect to both the maximum degree and the level-width, that is, the maximum number of vertices that share a level. Our study of Ordered Level Planarity is motivated by connections to several other graph drawing problems. Geodesic Planarity asks for a planar drawing of a graph such that vertices are placed at prescribed positions in the plane and such that every edge is realized as a polygonal path composed of line segments with two adjacent directions from a given set SS of directions symmetric with respect to the origin. Our results on Ordered Level Planarity imply NPNP-hardness for any SS with ∣SâˆŁâ‰„4|S|\ge 4 even if the given graph is a matching. Katz, Krug, Rutter and Wolff claimed that for matchings Manhattan Geodesic Planarity, the case where SS contains precisely the horizontal and vertical directions, can be solved in polynomial time [GD'09]. Our results imply that this is incorrect unless P=NPP=NP. Our reduction extends to settle the complexity of the Bi-Monotonicity problem, which was proposed by Fulek, Pelsmajer, Schaefer and \v{S}tefankovi\v{c}. Ordered Level Planarity turns out to be a special case of T-Level Planarity, Clustered Level Planarity and Constrained Level Planarity. Thus, our results strengthen previous hardness results. In particular, our reduction to Clustered Level Planarity generates instances with only two non-trivial clusters. This answers a question posed by Angelini, Da Lozzo, Di Battista, Frati and Roselli.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Drawing Arrangement Graphs In Small Grids, Or How To Play Planarity

    Full text link
    We describe a linear-time algorithm that finds a planar drawing of every graph of a simple line or pseudoline arrangement within a grid of area O(n^{7/6}). No known input causes our algorithm to use area \Omega(n^{1+\epsilon}) for any \epsilon>0; finding such an input would represent significant progress on the famous k-set problem from discrete geometry. Drawing line arrangement graphs is the main task in the Planarity puzzle.Comment: 12 pages, 8 figures. To appear at 21st Int. Symp. Graph Drawing, Bordeaux, 201

    Hanani-Tutte for radial planarity

    Get PDF
    A drawing of a graph G is radial if the vertices of G are placed on concentric circles C 1 , . . . , C k with common center c , and edges are drawn radially : every edge intersects every circle centered at c at most once. G is radial planar if it has a radial embedding, that is, a crossing-free radial drawing. If the vertices of G are ordered or partitioned into ordered levels (as they are for leveled graphs), we require that the assignment of vertices to circles corresponds to the given ordering or leveling. We show that a graph G is radial planar if G has a radial drawing in which every two edges cross an even number of times; the radial embedding has the same leveling as the radial drawing. In other words, we establish the weak variant of the Hanani-Tutte theorem for radial planarity. This generalizes a result by Pach and Toth

    On Smooth Orthogonal and Octilinear Drawings: Relations, Complexity and Kandinsky Drawings

    Full text link
    We study two variants of the well-known orthogonal drawing model: (i) the smooth orthogonal, and (ii) the octilinear. Both models form an extension of the orthogonal, by supporting one additional type of edge segments (circular arcs and diagonal segments, respectively). For planar graphs of max-degree 4, we analyze relationships between the graph classes that can be drawn bendless in the two models and we also prove NP-hardness for a restricted version of the bendless drawing problem for both models. For planar graphs of higher degree, we present an algorithm that produces bi-monotone smooth orthogonal drawings with at most two segments per edge, which also guarantees a linear number of edges with exactly one segment.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017
    • 

    corecore